

The Robot Challenge

An Affordable hands-on Engineering
Experience
for High School students

March 24 2006

FINISHED ROBOT IN AUTOMATED MODE

BASIC ROBOT IN MANUAL MODE

TASKS

- 1. Build a Robot, keeping a detailed log.
- 2. Prepare a Written Report about the experience, including schedule, problems encountered, and solutions.
- 3. Compete with teams from other schools over a course with hurdles.
- 4. Make Oral Presentation to judges.

10 YEARS EXPERIENCE

■ INITIAL # OF TEAMS

RELATIONSHIPS

BENEFITS

- 1. Appeals to boys and girls
 - typically over a third of the participants are girls

BENEFITS

2. AFFORDABLE

By keeping the cost low (about \$12 a student for the basic Robot) we are able to reach all students - even those in Inner City schools. Non-USA schools may be able to reduce the cost even further (see later).

BENEFITS

3. TEACHERS LIKE IT!

It does involve more work for teachers, but teachers particularly like the discipline of the Written Report and the Oral Presentations

BENEFITS

4. STUDENTS LIKE IT!

■ The hands-on activity with tools gets the students out of their chairs, and is a good project for Seniors who sometimes begin to taper off as they reach the end of their high school careers. They also like the challenge of competing against other teams.

BENEFITS

5. THERE'S SOMETHING FOR EVERYONE

project calls for a variety of skills and talents: working with tools, writing, designing an attractive robot body that does not interfere with the mechanical operation, teamwork, organization, and electrical theory.

BENEFITS

6. KIDS LEARN

BENEFITS

- 6. KIDS LEARN
 - They enjoy themselves as they learn

BENEFITS

6. KIDS LEARN

- They enjoy themselves as they learn
- They learn what its like to be an engineer

BENEFITS

6. KIDS LEARN

Even if they do not choose to become engineers, the skills they learn will serve them well in any profession.

TEAMWORK

- Students work together as a team.
- Mistakes by one affect the others.
- ☐ Students learn from mistakes and not to blame other members of the team.
- Each leg of the Robot is operated by a different member of team. They must learn to cooperate or the Robot will fail.

DETAILS

- Teams are provided with a Manual and a kit.
- ☐ The duration of the project will depend on the level of Challenge selected (4 levels are available) and the number of hours a week that they will spend on the project.
- ☐ Students provide the D-cell batteries.

DETAILS

- Students can work on the project during class time, or after school as an voluntary activity.
- □ Typically they will spend 2 to 4 months on the project - based on about 3 hours a week of work.
- □ A good teacher stimulates ideas but lets the students solve the problems.

TOOLS

- □ Basic carpentry tool are required saw, jig saw, electric drill, needlenose pliers, vise, screw drivers, wire stripper, sharp knife, sand paper, 25 watt soldering iron, safety goggles.
- A Dremel tool is advisable for cutting the threaded rods, and a bench drill press is helpful for aligning holes.

MANUALS

- ☐ The Manual provides all the information the students will need to implement the project, and it can also be integrated into a teaching program on basic mechanics and electricity.
- Teachers receive their own copy of the Manual, plus additional information.

MANUALS

- ☐ The Basic Students' Manual contains all the information needed to build the robot, standard orthogonal 2-dimention-al drawings, and information on preparing the Written Report and getting ready for the Challenge event.
- There is also background information on reading/understanding drawings.

MANUALS

- The Teachers Manual also contains sketches of what the Basic robot will look like when built, as well as information on the body covering.
- The Teacher may share this information with Students, or let them work this out by themselves.

LEVELS OF DIFFICULTY

- ☐ The 4 levels of "Challenge" are
 - 2-leg Robot
 - 4-leg Robot
 - 2-leg Robot with Automation
 - 4-leg Robot with Automation
- All Robots participate in the same event, but automated Robots run the course twice - first Manual, then Auto.

AUTOMATION

Automation requires an additional kit, has an additional Manual, and there is considerably more emphasis on electri-cal circuitry, electronics and program-ing. The kit includes the parts for a Stamp 2 with 16 I/O ports, a Bread-board, and all the hardware needed to operate the robot. It's a lot harder!

AUTOMATION

- ☐ Students take what they have learned operating the robot manually, translate it into code, and program the controller to duplicate the 8 commands needed to operate the 2-leg robot, or the 16 commands for the 4-leg robot.
- It turns out that every robot will be programmed in a unique manner.

RELATIVE COSTS

2-leg Robot: X

4-leg Robot: 2X

2-leg Robot w/Automation: 3X

4-leg Robot w/Automation: 4X

□ All kits include the Manuals

RELATIVE EFFORT

2-leg Robot	X
4-leg Robot	1.5X
2-leg Robot w/Automation*	2X
4-leg Robot w/Automation*	2.5X

□ Automation requires higher skill level Best for Grades 11 and 12.

THE CHALLENGE EVENT

THE JUDGES

GETTING STARTED

- ☐ Determine if you see a need.
- □ Plan to start with a 2-leg Robot about 70% of the our teams do that.
- If teacher and students enjoy the experience, consider upgrading the following year.
- Link with local IEEE section to obtain kits.

GETTING STARTED

- □ A 2-leg Robot requires one basic kit, a 4-leg Robot requires 2 kits.
- □ Each kit contains a large plastic bag, and 2 small plastic bags. The large bag contains most of the parts for the body of the robot, the small bags contain the parts for the two Control units.

GETTING STARTED

- ☐ Read the instructions.
- Start with the wood block probably the toughest part of the project, and it gets students using tools and overcoming problems.
- The motto needs to be: "Measure twice, cut once!"

MANUAL ROBOT KIT

MANUAL ROBOT KIT

AUTOMATION KIT

AUTOMATION KIT

OBTAINING KITS

- □ Kits should be obtained through your local IEEE section contact them.
 There may be discounts or grants.
- □ Kits can be obtained directly from us: Neville Jacobs, <u>Nevilleed@aol.com</u> or 410-653-4176.
- Schools located outside of the USA may wish to consider building their own kits.

WHAT IS IEEE

- It's the largest technical society in the world.
- It stands for the Institute of Electrical and Electronic Engineers.
- Has initiated this project as a means of encouraging students to become engineers. It's a non-profit project.
- Visit our web-site: www.robotchallenge.com

FURTHER INFORMATION

☐ If not in the USA, talk to us if you or your local IEEE section would like to consider building your own kits. A limited number of parts will be needed from the US, and these can be obtained through a distributor.

PARTS YOU COULD PROVIDE LOCALLY (AS WELL AS WOOD BLOCK & PLYWOOD)

PARTS OBTAINABLE FROM DISTRIBUTOR (ALSO THREADED RODS, MOTORS & TUBING)

Conclusion

- We thank you for your attention, and hope you will consider this project for your students.
- Please note that we are not in the business of selling kits - we are promoting a means of inspiring students to get acquainted with Engineering.